3 с минусом

Цели урока:

— закрепить умение умножать натуральные числа, обыкновенные и десятичные дроби;

— научить умножать положительные и отрицательные числа;

— воспитывать умение работать в группах,

— развивать любознательность, интерес к математике; умение мыслить, высказываться по теме.

Оборудование: модели термометров и дома, карточки для устного счета и проверочной работы, плакат с правилами знаков при умножении.

Ход урока

Мотивация

Учитель. Сегодня мы начинаем изучать новую тему. Мы как бы будем строить новый дом. Скажите, от чего зависит прочность дома?

Сейчас проверим, каков наш фундамент, то есть прочность наших знаний. Я вам не назвала тему урока. Она закодирована, то есть спрятана в задании для устного счета. Будьте внимательны и наблюдательны. Перед вами карточки с примерами. Решив их и поставив в соответствие ответу букву, вы узнаете название темы урока.

Учитель. Итак, это слово «умножение». Но мы уже с умножением знакомы. Зачем нам еще его изучать? Недавно вы познакомились с какими числами?

А умеем ли мы их умножать? Поэтому темой урока будет «Умножение положительных и отрицательных чисел».

Вы быстро и правильно решили примеры. Хороший фундамент заложили. (Учитель на модели дома «закладывает» фундамент.) Думаю, что дом будет прочным.

Изучение новой темы

Учитель. Теперь будем возводить стены. Они соединяют пол и крышу, то есть старую тему с новой. Сейчас вы будете работать группами. Каждая группа получит задачу, которую нужно решить всем вместе, а затем ее решение объяснить классу.

1-я группа

Температура воздуха понижается каждый час на 2°. Сейчас термометр показывает ноль градусов. Какую температуру он покажет через 3 часа?

Решение группы. Так как сейчас температура 0 и за каждый час температура понижается на 2°, то очевидно, что через 3 часа температура будет –6°. Обозначим понижение температуры –2°, а время +3 часа. Тогда можно считать, что (–2)·3 = –6.

Учитель. А что будет, если я множители переставлю, то есть 3·(–2)?

Учащиеся. Ответ тот же: –6, так как используется переместительное свойство умножения.

2-я группа

Температура воздуха понижается каждый час на 2°. Сейчас термометр показывает ноль градусов. Какую температуру воздуха показывал термометр 3 часа назад?

Решение группы. Так как температура за каждый час понижалась на 2°, а сейчас 0, то очевидно, что 3 часа назад она была +6°. Обозначим понижение температуры –2°, а прошедшее время –3 часа. Тогда можно считать, что (–2)·(–3) = 6.

Учитель. Вы пока не умеете умножать положительные и отрицательные числа. Но решали задачи, где нужно было умножать такие числа. Попробуйте сами вывести правила умножения положительного и отрицательного чисел, двух отрицательных чисел. (Ученики пытаются вывести правило.) Хорошо. Сейчас откроем учебники и прочитаем правила умножения положительных и отрицательных чисел. Сравните свое правило с тем, что записано в учебнике.

Правило 1. Чтобы умножить два числа с разными знаками, надо умножить модули этих чисел и поставить перед полученным произведением знак «–».

Правило 2. Чтобы умножить два числа с одинаковыми знаками, надо умножить модули этих чисел и поставить перед полученным произведением знак «+».

Учитель. Как вы видели при строительстве фундамента, у вас с умножением натуральных и дробных чисел нет проблем. Проблемы могут возникнуть при умножении положительных и отрицательных чисел. Почему?

Запомните! При умножении положительных и отрицательных чисел:

1) определяют знак;
2) находят произведение модулей.

Учитель. Для знаков при умножении есть свои мнемонические правила, которые запомнить очень просто. Коротко их формулируют так:

«+»·»+» = «+» — плюс на плюс дает плюс;
«–»·»+» = «–» — минус на плюс дает минус;
«+»·»–» = «–» — плюс на минус дает минус;
«–»·»–» = «+» — минус на минус дает плюс.

(В тетрадях ученики записывают правило знаков.)

Учитель. Если себя и своих друзей считать положительными, а наших врагов отрицательными, то можно сказать так:

Друг моего друга — мой друг.
Враг моего друга — мой враг.
Друг моего врага — мой враг.
Враг моего врага — мой друг.

Первичное осмысление и применение изученного

На доске примеры для устного решения. Ученики проговаривают правило:

–5·6;
–8·(–7);
9·(–3);
–45·0;
6·8.

Учитель. Все понятно? Нет вопросов? Таким образом, стены построены. (Учитель ставит стены.) Теперь что строим?

— Крышу.

Закрепление.

(К доске вызывается четверо учеников.)

Учитель. Крыша готова?

— Да.

(Учитель ставит крышу на модель домика.)

Проверочная работа

Ученики выполняют работу в один вариант.

После выполнения работы меняются тетрадями со своим соседом. Учитель сообщает верные ответы, а ученики выставляют отметки друг другу.

Итог урока. Рефлексия

Учитель. Какую цель мы ставили в начале урока? Вы научились умножать положительные и отрицательные числа? (Повторяют правила.) Как вы увидели на этом уроке, каждая новая тема — это дом, который нужно строить капитально, на годы. Иначе все ваши постройки через непродолжительное время рухнут. Поэтому всё зависит от вас. Я желаю, ребята, чтобы вам всегда улыбалась удача, успехов в усвоении знаний.

Как известно вычитание — это действие, противоположное сложению.

Если «a» и «b» — положительные числа, то вычесть из числа «a» число «b», значит найти такое число «c», которое при сложении «с» числом «b» даёт число «a».

a − b = с или с + b = a

Определение вычитания сохраняется для всех рациональных чисел. То есть вычитание положительных и отрицательных чисел можно заменить сложением.

Запомните!

Чтобы из одного числа вычесть другое, нужно к уменьшаемому прибавить число противоположное вычитаемому.

Или по другому можно сказать, что вычитание числа «b» — это тоже самое сложение, но с числом противоположным числу «b».

a − b = a + (−b)

Пример.

6 − 8 = 6 + (− 8) = −2

Пример.

0 − 2 = 0 + (−2) = −2

Запомните!

Стоит запомнить выражения ниже.

0 − a = − a
a − 0 = a
a − a = 0

Правила вычитания отрицательных чисел

Как видно из примеров выше вычитание числа «b» — это сложение с числом противоположным числу «b».

Это правило сохраняется не только при вычитании из бóльшего числа меньшего, но и позволяет из меньшего числа вычесть большее число, то есть всегда можно найти разность двух чисел.

Разность может быть положительным числом, отрицательным числом или числом ноль.

Примеры вычитания отрицательных и положительных чисел.

  • −3 − (+ 4) = −3 + (−4) = −7
  • −6 − (−7) = −6 + (+ 7) = 1
  • 5 − (−3) = 5 + (+ 3) = 8

Удобно запомнить правило знаков, которое позволяет уменьшить количество скобок.

Знак «плюс» не изменяет знака числа, поэтому, если перед скобкой стоит плюс, то знак в скобках не меняется.

+ (+ a) = + a
+ (−a) = −a

Знак «минус» перед скобками меняет знак числа в скобках на противоположный.

−(+ a) = − a
−(−a) = + a

Из равенств видно, что если перед и внутри скобок стоят одинаковые знаки, то получаем «+», а если знаки разные, то получаем «−».

(−6) + (+ 2) − (−10) − (− 1) + (− 7) = −6 + 2 + 10 + 1 − 7 = − 13 + 13 = 0

Правило знаков сохраняется и в том случае, если в скобках не одно число, а алгебраическая сумма чисел.

a − (− b + c) + (d − k + n) = a + b − c + d − k + n

Обратите внимание, если в скобках стоит несколько чисел и перед скобками стоит знак «минус», то должны меняться знаки перед всеми числами в этих скобках.

Чтобы запомнить правило знаков можно составить таблицу определения знаков числа.

Правило знаков для чисел

Добавить комментарий